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Abstract:  
The scanning-type infrared line sensors are widely used for 

high-quality general imaging and spectroscopic imaging 
applications. And the striping fixed pattern noise produced by 
IRLS can hardly be removed cleanly by many scene-based non-
uniformity correction methods, though which can work effectively 
for staring focal plane arrays. A novel nonuniformity correction 
algorithm for IRLS combining constant-statistics approach with 
neural networks is proposed, correcting the aggregate 
nonuniformity in separate stages. First, the nonuniformity is pre-
corrected by use of knowledge on local constant statistics 
constraint, producing the channel-correction result, which is 
filtered by a median filter to act as the ideal output of the neural 
network in the next stage. Second, a linear neural network added 
some optimization strategies is adopted, making the correction 
parameters of line sensors update column by column and 
generating final corrected result at one frame. By applying the 
technique to both simulated and real infrared image sequences, it 
is demonstrated that the scene-based algorithm has advantages of 
low complexity and can achieve a higher correction level in tens of 
frames, removing striping noise effectively. Its potential to realize 
real-time hardware-based applications is huge.  
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1. Introduction 
Focal plane array (FPA) sensors have become the most 

prominent detector used for space and satellite applications. And 
the one-dimensional FPA, also called infrared line scanner (IRLS) 
are widely used to obtain infrared images of target on high 
resolution in some military cases and aerospace applications. For 
IRLS, the final images are generated by horizontal sweeping on 
the line sensors. Hence, it suffers from a common problem called 
the fixed pattern noise (FPN), which usually manifests as 
horizontal stripes. The striping FPN severely limits the system 
performance and decreases the temperature resolution, so modern 
image processing techniques are required to realize nonuniformity 
correction (NUC). 

A considerable amount of research has been focused on 
developing adaptive scene-based NUC techniques that in essence 
identify the true IR image from the FPN by exploiting motion-
related features in image sequences. The frequently referred scene-
based techniques include those based on constant-statistics (CS) 
[1,2] assumption, the Kalman-filtering approach [3], a neural-
network (NNT) implementation based on least mean square error 
(LMSE)[4,5,6], and the registration-based NUC methods[7]etc. 

Although the above mentioned algorithms can have, to some 
degree, a preferable effect in correcting staring-type FPA, but they 
are not readily applied to the case of scanning type FPN. 

Specifically, the constant statistics method and the NNT approach 
may introduce disturbing traces remained after correction, the so-
called ghosting effect; the registration-based methods cannot 
effectively suppress striping noises because the interference of the 
horizontal stripes severely decreased the accuracy of relative 
motion (mostly horizontal) estimate between frames. In addition, 
Kalman-filter approaches need thousands of frames to achieve 
accepted corrected results, and the computation is very compli-
cated. 

Motivated by this, we proposed an improved NUC algorithm 
for IRLS. The novelty of our method is modification and 
integration of the existing NUC methods, local constant-statistics 
(LCS) and neural networks. First, every row of pixels is treated as 
one channel and then normalize these channel outputs so that each 
channel has the first- and second-order statistics that are equal to 
the mean of its neighboring statistic items, thus we get the channel-
correction-based result of nonuniformity[8].  

This is followed by the nonuniformity correction using linear 
neural network. The preceding corrected result is filtered by a 
vertical one-dimensional median filter in order to obtain a 
preliminary estimate of the true scene as ideal output of the neural 
network. Then the individual detector gain and bias parameters are 
estimated column by column recursively at the least mean squares 
(LMS) sense, and the final result of gain and bias are taken as the 
average of their estimated values along rows.  

2. Development of NUC Algorithm 

2.1 Preliminary Correction Based on LCS 
Infrared line scanners generate one field image by push-

brooming the line array sensors, so the nonuniformity demons-
trates as stripe patterns. For IRLS of size M× N, there are M 
detectors need correcting. Pixels belong to each row of a frame are 
characterized by a linear model. The input–output relationship for 
each row can be expressed as 
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Where )(ibk and )(ick are the gain and bias parameters for 
the ith row, i= 1, 2…M. k=1,2… is the frame number. yk(i,j) is 
detector output of FPA and zk(i,j) is the channel-correction output 
of the kth frame. 

We assume every row of pixels as one channel. The aim of our 
preliminary correction is to force pixels belonging to channel i to 
have the same first- and second-order statistics with mean of the 
corresponding statistics of the adjacent two channels i-1 and i+1. 
Consequently, the statistical difference between local channels is 
decreased and the striping noise is weakened. This is what we refer 
to as the local constant statistics (LCS) constraint.[2,9]. 

The channel-based correction can be performed interframely. 
Once the constraint of LCS is defined, it is possible to determine 



 

 

the gain and bias of each row by sample mean and the standard 
deviation estimates. The mean and standard deviation estimates for 
ith channel of the kth frame are given by  
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 where Mi ,...,2,1= , µ  and σ  are column scalars which have N 

elements. The mean of first- and second-order statistics items for 
the neighboring channels of ith channel are formed as  
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where  i＝2,3,…M-1, when i=1 or i=M we made the assumptions 
as Eq. (4), (5) shows, 
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The primary part of the LCS-based NUC involves estimating 
the group mean and standard deviations of the local channels. In 
order to increase the accuracy of the statistics estimates, we need to 
get a sufficient number of samples. So we take into account the 
data from the previous frames, deriving the following recursive 
formula, consequently, the process of implementation can be 
simplified because of recursive computation. 
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where λ  is the forgetting factor, representing weight of the statistic 
items obtained from the current frame in the estimate of the whole 
past frames and 10 << λ . The value of λ  can be determined by 
the shift rate of the fixed pattern noise, if the nonuniformity shifts a 
little faster, λ  can be chosen from [0.5, 1]. 

For each channel to have first- and second-order statistics that 
are equal to the mean of its neighboring statistics, we apply the 
following correction to obtain the estimate of ),( jizk .   
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 For i =1, 2…M. The effective gain and bias estimates from 
Eq. (7) are given by  
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2.2 Further NUC Using Neural Networks 
In the second phase of the proposed algorithm, a neural 

network is introduced to realize the detector-level NUC. We must 
note that though the first stage NUC requires a few frames, this 
NNT procedure based on the preceding correction needs only one 
frame, because each neuron can learn N-1 times along one row. 
Hence we omit the frame number index in the following derivation. 

A linear neuron model in Eq. (9) can be considered as the 
simplest neural network structure. Where x(i,j) is the irradiance 
actually received by each sensor, also acts as the neuron output; the 
pre-correction result ),(z ji  is the neuron input, namely 

                              ii ojigjix +⋅= ),(z),(                       (9) 
Where g and o are weight and offset of the neuron respectively, 
i=1,2…M and j=1,2…N. 

Traditional NNT algorithms must renew g and o frame by 
frame and can’t remove the horizontal stripes effectively when 
applied to image sequences produced by the IRLS. Because the 

network expected output is mean of the four nearest neighboring 
pixels of estimated outputs, and the mean value is not a satisfactory 
estimate for wiping off horizontal stripe noises.  

Therefore, a median filter is used to provide a robust estimate 
of the true irradiance for neurons, but it also reduces the spatial 
signal resolution. Note that after channel correction, the fluctuation 
of striping noise is weakened. So it is possible to use a small median 
window to achieve a high correction level and to reduce the 
computation load at the same time. Furthermore, the steepest 
descent regression is used to identify iĝ and iô  based on ),(z ji , 
and the reduced spatial resolution can be restored by the self-
learning of correction parameters in NNT. 

iĝ and iô must be updated using linear regression to obtain a 
good estimation for the real infrared data by minimizing some error 
function ),( jiE , which is defined as the difference between the 
estimated output ),(ˆ jix  and the target scene estimate 

),( jiT ,obtained with the median filter, as shown in Eq.(10)  
),(),(ˆ),( jiTjixjiE −=                                (10) 

In order to minimize the error ),( jiE  in the mean square 
error sense, the parameters are recursively and smoothly updated 
with a portion of each respective error gradient column by column. 
However, the learning process is not robust enough and 
some optimization strategies[6] are added to prevent the 
production of ghosting artifacts, which is a problem present in most 
scene-based NUC techniques. The three adopted optimizations, 
including momentum, regularization and adaptive learning rate, 
have their own respective advantages. Specifically, the 
regularization factor r is only added to the gain updating, forcing all 
the gain values in the same column to have a unitary mean, and 
accelerating the convergence rate. The use of momentum can 
improve the stability of the algorithm by preventing the local 
minima problem and suppressing the production of ghosting. In 
addition, the adaptive learning rate η(i,j) can speed up the 
convergence greatly and control the production of artifacts. It is 
defined to be inversely proportional to 2

),( jizσ  which is the local 
spatial square variance of the input pixel ),(z ji and can be 
computed previously as a priori. Hence the improved parameter 
learning process are described as 
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where γ , � and K (the maximum learning rate allowed) are all 
constants, j=1,2,…,N-1. The initial values for parameters 
estimation are gi =1 and oi = 0.  

In practice, we may take further simplifications to facilitate 
real-time realization. Suppose the primary source of generated FPN 
is due to the sensor bias, which is consistent to the actual 
conditions. Therefore in NNT procedure, all the gains of sensors 
may be assumed to be 1. Correspondingly, the learning process of 
NNT may be simplified as 
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After evaluating the parameters, we get N estimates for each 

iĝ and iô . These estimates are averaged to result in a final 



 

 

compensator to correct the IRLS outputs along rows, namely 
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Indeed, the performance of NUC technique after simplification is 
equivalent, or even better. 

Since the spatial nonuniformity drifts slowly, we can divide 
the image sequences into groups that include a fixed number of 
frames. For practical applications, during each group, the striping 
noise can be corrected by two stages and the NUC parameters 
derived from the current group can be used to compensate for the 
next group. 

3. Performance Analysis for Simulated Data 
In order to test the algorithm performance, we apply it to one 

artificial corrupted image sequence, which is formed by moving a 
256×256 window from a large visible 8-bit image horizontally and 
vertically. Every pixel value of the true image in the same row is 
multiplied by the same gain and is added to the same bias, thus, the 
noise in pattern of horizontal stripes is generated from the clear 
scene. The means of gains and biases are 1 and 0 respectively, and 
both are of Gaussian random distribution. Different simulated 
nonuniformity can be introduced to the clean sequences by varying 
the variance of the gains and biases.  

The NUC performance is evaluated using the performance 
indexes Q-factor [10], computed between the true clean image and 
the corrected results. For the Q-factor, the dynamical range is [−1, 
1], where +1 represents the best. 

The standard deviation of the artificial gain and bias is 
σgain=0.2, σbias=30. The Q-factors for the corrupted image 
sequences are about 0.72 (‘RAW’). Figure 1 displays correction 
capability of the proposed NUC algorithms. The images corrupted 
by the above striping noise are tested and Q-factors of the 
corrected results using different approaches are plotted. ‘RAW’ 
denotes quality of the corrupted image sequences. ‘LCS’ indicates 
the channel-correction results using local constant statistics 
constraint. Here we chose 5.0=λ in implementation and we can 
see Q increased to 0.95 by less than 10 frames. However, when 
correction on LCS acts as the preprocessing of NNT approach, 
best enhancement of the image quality can be achieved, as 
‘LCS+NNT’ shown, Q-factors of the corrected result are more 
than 0.96, which is very close to the ideal value 1. 
Furthermore, ’NNT’ means each frame is corrected by only use of 

neural network and the Q-factor can rise to 0.936 by a single frame, 
though is a little lower than other two methods. Fig 2 displays the 
60th frame of the simulated image sequence and the Q factors are 
listed below each diaphragm. Where (a) is the corrupted 60th frame, 
and channel correction based on LCS can weaken striping noise 
greatly as shown in (b). (c) depicts the final result with Q=0.971, 
which is almost the same with (d), the true scene. So further 
process by use of NNT can remove most of the striping noise and 
enhance the image quality remarkably. 

4. Experimental results of real IR data 
In this section, the proposed algorithm will be applied to real 

infrared data captured with IRLS. We use a 288×4 uncooled 
scanning type IR FPA to capture a set of image sequence with 100 
frames in length. The FPA is composed of indium antimonide 
(InSb) detectors with a response in the 3–5µm wavelength band. 
The size of each frame is 576 × 768. Each frame is a combination of 
two fields which are built up by sweeping line array sensors at one 
time. The NUC proceeded repeatedly as follows, we divided the 
image sequence into groups which each comprised 20 frames; For 
each frame group, the channel correction based on LCS was 
executed frame by frame, while the NUC using NNT was only 
applied to the last frame of the group. Then the obtained correction 
parameters were used to compensate the nonuniformity of the next 
group. The application results are shown in Fig. 3; (a) is the raw IR 
data of the 80th frame. In the recursive computation we 
made 5.0=λ . Note that the NNT correction requires as little as 
one frame for correction because each row contains a sufficient 
number of pixels. The final corrected frame is shown in Fig.3 (b), 
Note that most of striping artifacts are effectively removed and 
original resolution are remained. 

 Note that for a fixed IRLS, the mode of striation is almost 
fixed, so it is possible to remove the nonuniformity if the estimate of 
the desired neuron output were obtained with a larger median filter. But it 

         (c) Q=0.971                                 (d) Q=1 

Figure 2 The 60th frame of simulated image sequence.  

(a) The corrupted image; (b) Correction result with LCS; 

     (c)Correction result with ‘LCS+NNT’; (d) True clean image 

          (a) Q=0.725                                (b) Q=0.951 

Figure 1 Correction capability of the proposed algorithms.  
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increases the computation load greatly and is time consuming to 
use a larger median filter. The intermediate stage of the LCS-based 
channel correction weaken the striping noise effectively, thus it 
helps to downsize the size of the median filter and to avoid 
computational complexity.   

5. Conclusions 
We have presented an improved NUC technique for infrared 

line scanners. It corrected the striping nonuniformity in two stages 
by different ways. From applications to simulative and real 
infrared data, we can conclude that the size of the median filter 
necessary to provide the preliminary scene estimate is dependent 
on the FPA and a higher correction level can be obtained by the 
proposed technique in tens of frames. The authors would like to 
acknowledge Xia Wang and Tingzhu Bai in the Key Lab of 
Infrared Technology of Beijing Institute of Technology for 
providing us the infrared cameras used here.  
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(b) Corrected result by our proposed method    

Figure 3 The 80th frame of real infrared image sequence 

(a) Raw infrared data of 80th  frame             
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